Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo
نویسندگان
چکیده
منابع مشابه
Redox-dependent Regulation of Gluconeogenesis by a Novel Mechanism Mediated by a Peroxidatic Cysteine of Peroxiredoxin
Peroxiredoxin is an abundant peroxidase, but its non-peroxidase function is also important. In this study, we discovered that Tsa1, a major peroxiredoxin of budding yeast cells, is required for the efficient flux of gluconeogenesis. We found that the suppression of pyruvate kinase (Pyk1) via the interaction with Tsa1 contributes in part to gluconeogenic enhancement. The physical interactions be...
متن کاملMetformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase dependent regulation of the orphan nuclear rec
Objective: Metformin is an antidiabetic drug which is commonly used to treat type 2 diabetes. The aim of the study was to determine whether metformin regulates hepatic gluconeogenesis through the orphan nuclear receptor small heterodimer partner (SHP; NR0B2). Research Design and Methods: We assessed the regulation of hepatic SHP gene expression by Northern blot analysis with metformin and adeno...
متن کاملMechanism of fat-induced hepatic gluconeogenesis: effect of metformin.
High-fat feeding has been shown to cause hepatic insulin resistance. The aims of this study were to investigate the biochemical steps responsible for enhanced gluconeogenesis as a result of increased dietary fat intake and the site or sites at which the antihyperglycemic agent metformin acts to inhibit this process. Male Hooded Wistar rats were fed either a standard chow diet (5% fat by weight)...
متن کاملMetformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state.
Metformin is widely used to treat hyperglycemia in individuals with type 2 diabetes. Recently the LKB1/AMP-activated protein kinase (LKB1/AMPK) pathway was proposed to mediate the action of metformin on hepatic gluconeogenesis. However, the molecular mechanism by which this pathway operates had remained elusive. Surprisingly, here we have found that in mice lacking AMPK in the liver, blood gluc...
متن کاملEndoplasmic Reticulum Stress Inhibits STAT3-Dependent Suppression of Hepatic Gluconeogenesis via Dephosphorylation and Deacetylation
In the liver, signal transducer and activator of transcription 3 (STAT3) plays an important role in the suppression of gluconeogenic enzyme expression. While obesity-associated endoplasmic reticulum (ER) stress has been shown to increase hepatic gluconeogenic enzyme expression, the role of ER stress in STAT3-dependent regulation of such expression is unclear. The current study aimed to elucidat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Medicine
سال: 2018
ISSN: 1078-8956,1546-170X
DOI: 10.1038/s41591-018-0125-4